GREGOR MENDEL
(Johann Gregor o Gregorio Mendel; Heizendorf, hoy Hyncice, actual República Checa, 1822 - Brünn, hoy Brno, id., 1884) Monje y botánico austriaco que formuló las leyes de la herencia biológica que llevan su nombre. Sus rigurosos experimentos sobre los fenómenos de la herencia en las plantas constituyen el punto de partida de la genética, una de las ramas fundamentales y emblemáticas de la biología moderna.
Su padre era un veterano de las guerras napoleónicas, y su madre, la hija de un jardinero. Tras una infancia marcada por la pobreza y las penalidades, en 1843 Johann Mendel ingresó en el monasterio agustino de Königskloster, cercano a Brünn, donde tomó el nombre de Gregor y fue ordenado sacerdote en 1847.
Residió en la abadía de Santo Tomás (Brünn) y, para poder seguir la carrera docente, fue enviado a Viena, donde se doctoró en matemáticas y ciencias (1851). En 1854 Mendel se convirtió en profesor suplente de la Real Escuela de Brünn, y en 1868 fue nombrado abad del monasterio, a raíz de lo cual abandonó de forma definitiva la investigación científica y se dedicó en exclusiva a las tareas propias de su función.
El núcleo de sus trabajos (que comenzó en el año 1856 a partir de experimentos de cruzamientos con guisantes efectuados en el jardín del monasterio) le permitió descubrir las tres leyes de la herencia o leyes de Mendel, gracias a las cuales es posible describir los mecanismos de la herencia y que serían explicadas con posterioridad por el padre de la genética experimental moderna, el biólogo estadounidense Thomas Hunt Morgan (1866-1945).
En el siglo XVIII se había desarrollado ya una serie de importantes estudios acerca de hibridación vegetal, entre los que destacaron los llevados a cabo por Kölreuter, W. Herbert, C. C. Sprengel y A. Knight, y, ya en el siglo XIX, los de Gärtner y Sageret (1825). La culminación de todos estos trabajos corrió a cargo, por un lado, de Ch. Naudin (1815-1899) y, por el otro, de Gregor Mendel, quien llegó más lejos que Naudin.
Las tres leyes descubiertas por Mendel se enuncian como sigue: según la primera, cuando se cruzan dos variedades puras de una misma especie, los descendientes son todos iguales; la segunda afirma que, al cruzar entre sí los híbridos de la segunda generación, los descendientes se dividen en cuatro partes, de las cuales tres heredan el llamado carácter dominante y una el recesivo; por último, la tercera ley concluye que, en el caso de que las dos variedades de partida difieran entre sí en dos o más caracteres, cada uno de ellos se transmite con independencia de los demás.
Para realizar sus trabajos, Mendel no eligió especies, sino razas autofecundas bien establecidas de la especie Pisum sativum. La primera fase del experimento consistió en la obtención (mediante cultivos convencionales previos) de líneas puras constantes y en recoger de manera metódica parte de las semillas producidas por cada planta. A continuación cruzó estas estirpes, dos a dos, mediante la técnica de polinización artificial. De este modo era posible combinar, de dos en dos, variedades distintas que presentan diferencias muy precisas entre sí (semillas lisas-semillas arrugadas; flores blancas-flores coloreadas, etc.).
El análisis de los resultados obtenidos permitió a Mendel concluir que, mediante el cruzamiento de razas que difieren al menos en dos caracteres, pueden crearse nuevas razas estables (combinaciones nuevas homocigóticas). Pese a que remitió sus trabajos con guisantes a la máxima autoridad de su época en temas de biología, W. von Nägeli, sus investigaciones no obtuvieron el reconocimiento hasta el redescubrimiento de las leyes de la herencia por parte de Hugo de Vries, Carl E. Correns y E. Tschernack von Seysenegg, quienes, con más de treinta años de retraso, y después de haber revisado la mayor parte de la literatura existente sobre el particular, atribuyeron a Johan Gregor Mendel la prioridad del descubrimiento.
Las leyes de Mendel
Las leyes mendelianas de la herencia establecen la forma en que se transmiten ciertos caracteres de los seres orgánicos de una generación a otra. Gregor Mendel formuló estas leyes a partir de una serie de experimentos realizados entre 1856 y 1865 que consistieron en cruzar dos variedades de guisantes y estudiar determinados rasgos: el color y la ubicación de las flores en la planta, la forma y el color de las vainas de guisantes, la forma y el color de las semillas y la longitud de los tallos de las plantas.
El método que utilizó Mendel fue transferir el polen (células sexuales masculinas) del estambre (órgano reproductor masculino) de una planta de guisantes al pistilo (órgano reproductor femenino) de una segunda planta de guisantes. Como ejemplo de estos experimentos, supongamos que se recoge el polen de una planta de guisantes con flores rojas y se fecunda con él una planta de guisantes con flores blancas. El objetivo de Mendel era saber de qué color serían las flores de la descendencia de estas dos plantas.
En una segunda serie de experimentos, Mendel estudió los cambios que se producían en la segunda generación. Es decir, supongamos que se cruzan dos descendientes del primer cruzamiento rojo/blanco. ¿Qué color tendrían las flores en esta segunda generación de plantas? Como resultado de sus investigaciones, Mendel definió tres leyes generales sobre la forma en que se transmiten los rasgos de una generación a la siguiente en las plantas de guisantes.
La primera ley de Mendel es denominada ley de los caracteres dominantes o de la uniformidad de los híbridos de la primera generación filial. Si se cruza una línea pura de guisantes de semilla lisa con otra de semilla rugosa, los individuos de la primera generación filial o F1 son todos uniformes; en este caso se parecen todos a uno de los progenitores, el de semilla lisa. El mismo Mendel denominó dominante al carácter que prevalece en el híbrido, y recesivoal que no se manifiesta en él. Posteriormente se vio que la dominancia es un hecho común pero no universal. Muchas veces hay herencia intermedia, porque los híbridos presentan un aspecto intermedio. En otros casos, la situación es de codominancia.
La segunda ley es la ley de la segregación. Si se plantan las semillas de los híbridos de la primera generación filial (F1) y se deja que se autofecunden, se obtiene la segunda generación filial o F2, pudiéndose observar que la proporción entre lisas y rugosas es de 3:1, en el caso de monohibridismo con dominancia. Dicho de otro modo, aparecen en la generación siguiente tres cuartas partes de la descendencia con el carácter dominante (semilla lisa) y una cuarta parte con el carácter recesivo (semilla rugosa). En los casos de monohibridismo con herencia intermedia y de codominancia hay tres tipos de individuos similares a un progenitor, en la proporción de 1:2:1.
En la época de Mendel no se conocía la biología molecular; lo que en la actualidad se denomina gen es lo que Mendel en su día denominó factor hereditario: una unidad biológica responsable de la transmisión de rasgos genéticos. Mendel supuso que los caracteres alternativos están determinados por estos "factores hereditarios", que se transmiten a través de los gametos, y que cada factor puede existir en dos formas alternativas o alelos (liso/rugoso, rojo/blanco...); supuso asimismo que cada individuo posee dos genes para cada carácter. Se denomina homocigoto al individuo que tiene dos alelos idénticos para un determinado carácter, y heterocigoto al que los tiene distintos. De la reaparición de los caracteres de los progenitores en la segunda generación, Mendel concluyó la ley de la segregación, que postula que los dos factores (genes) para cada carácter no se mezclan ni fusionan de ninguna manera, sino que se segregan en el momento de la formación de los gametos.
La tercera ley, llamada ley de la transmisión independiente o de la independencia de los caracteres, postula que los genes para distintos caracteres se heredan de forma independiente. Puede servir de ilustración el experimento en que Mendel cruzó plantas de semillas lisas y amarillas y plantas de semillas rugosas y verdes. Después de una primera generación filial en que todos los individuos híbridos son uniformes porque repiten las características del progenitor doble dominante, la segunda generación se compone de cuatro clases de individuos (liso y amarillo, liso y verde, rugoso y amarillo, y rugoso y verde) en una proporción de 9:3:3:1. Esta ley se deriva del hecho de que Mendel estudió, sin saberlo, caracteres libres; no tiene valor universal, porque muchos caracteres están ligados a otros y su segregación no es independiente, como puede constatarse para los caracteres diferentes que encierra un mismo cromosoma.
La aplicación de las tres leyes de Mendel permite predecir las características que presentará la descendencia de progenitores de composición genética conocida. Supongamos una planta de guisantes en la que ambos alelos del gen para el color de la flor llevan el código rojo. Una manera de representar esta situación es escribir RR, lo que indica que ambos alelos (R y R) tienen el código de color rojo. Sin embargo, otro gen podría tener una combinación diferente de alelos, como ocurre en Rr. En este caso, R significa color rojo, y r "color no rojo" o, lo que es lo mismo, "color blanco"; la flor será roja porque, por la primera ley, el carácter dominante se impone al recesivo.
Veamos el cruzamiento entre una planta de guisantes con flores rojas (RR) y una con flores blancas (rr). Por la segunda ley, los genes de ambos padres (RR y rr) se segregarán para producir los correspondientes alelos, que podrán combinarse en cuatro maneras diferentes. Sin embargo, las cuatro combinaciones producen el mismo resultado: Rr. Por ser R el carácter dominante, las cuatro plantas tendrán flores de color rojo. Pese a ello, la situación ha cambiado: el nuevo gen de esta primera generación filial consta de un alelo para el rojo (R) y un alelo para el "no rojo" (r). Los genes de los padres eran RR y rr; los genes de todos los hijos son Rr.
Cuando se cruzan dos plantas de esta primera generación filial (Rr y Rr), una vez más, los alelos de cada planta se separan uno de otro, y, una vez más, los alelos pueden recombinarse en cuatro maneras distintas, pero, en este caso, los resultados son diferentes de los obtenidos en la primera generación. Los posibles resultados son dos combinaciones Rr, una combinación RR y una combinación rr. Como R es dominante sobre r, tres de las cuatro combinaciones producirán plantas con flores rojas, y una (la opción rr) producirá plantas con flores no rojas (blancas).
Los avances científicos posteriores a su época han puesto de relieve que las leyes de la herencia de Mendel constituyen una simplificación de procesos que a menudo son mucho más complejos que los ejemplos proporcionados. Sin embargo, estas leyes sirven todavía hoy como base fundamental para la ciencia de la genética, que no habría nacido sin los descubrimientos de Mendel. El método con el que verificó sus experimentos fue rigurosísimo, y sirvió de modelo también a las investigaciones que en gran número se desarrollarían en este campo.
Louis Pasteur
(Dole, Francia, 1822 - Marnes-la-Coquette, 1895) Químico y bacteriólogo francés, fundador de la microbiología y pionero de la medicina moderna.
Desde los tiempos de Hipócrates (siglo V a.C.) se habían atribuido las enfermedades a abstractos desequilibrios de los humores internos del cuerpo humano. Hubo que esperar al siglo XIX para que, de la mano de geniales investigadores como Louis Pasteur y Robert Koch, quedase firmemente establecida la teoría del origen microbiano de las enfermedades infecciosas, según la cual éstas son provocadas por gérmenes patógenos ambientales que penetran en el organismo sano; la determinación de las causas concretas y seguras de una amplia gama de afecciones supuso el inicio de la actual medicina científica. Pasteur dio asimismo un impulso decisivo al desarrollo de las vacunas, siendo especialmente recordado por el éxito de su vacuna contra la rabia (1885).
Francis Crick
(Francis Harry Crick; Northampton, Reino Unido, 1916 - San Diego, Estados Unidos, 2004) Bioquímico inglés. Agregado del Almirantazgo británico como físico militar durante la Segunda Guerra Mundial, mejoró las minas magnéticas. Finalizada la contienda, se dedicó a la biología y trabajó en diversos laboratorios, como el Strangeways Research Laboratory.
Francis Crick
En 1951 coincidió con el biólogo estadounidense James Watson en la unidad de investigación médica de los laboratorios Cavendish de Cambridge. Utilizando los trabajos de difracción de los rayos X llevados a cabo por Maurice Wilkins, ambos estudiaron los ácidos nucleicos, en especial el ADN, considerado como fundamental en la transmisión hereditaria de la célula.
A través de estos estudios llegaron a la formulación de un modelo que reconstruía las propiedades físicas y químicas del ADN, compuesto por cuatro bases orgánicas que se combinaban en pares de manera definida para formar una doble hélice, lo cual determinaba una estructura helicoidal.
Así, Crick y Watson pusieron de manifiesto las propiedades de replicación del ADN y explicaron el fenómeno de la división celular a nivel cromosómico. Al mismo tiempo establecieron que la secuencia de las cuatro bases del ADN representaba un código que podía ser descifrado, y con ello sentaron las bases de los futuros estudios de genética y biología molecular.
Por este descubrimiento, considerado como uno de los más importantes de la biología del siglo XX, Crick, Watson y Wilkins fueron galardonados con el Premio Nobel de Fisiología y Medicina en 1962. A partir de 1977, Crick se dedicó a la enseñanza en el prestigioso Salk Institute for Biological Research Studies de San Diego.
James Dewey Watson
(Chicago, 1928) Bioquímico y genetista estadounidense considerado uno de los padres de la biología molecular. Recibió el premio Nobel de Fisiología y Medicina de 1962 por el descubrimiento de la estructura molecular en doble hélice del ácido desoxirribonucleico (ADN) y de su funcionamiento como molécula trasmisora de la herencia biológica. Dirigió el Proyecto Genoma Humano desde 1988 hasta 1992, año en el que renunció como protesta a la ū de que se patentasen los genes.
James D. Watson
James Dewey Watson estudió en su ciudad natal y en Indiana. En 1947 obtuvo el equivalente a una licenciatura en zoología y en 1950 se doctoró en zoología por la Universidad de Indiana. En esta universidad conoció a genetistas y microbiólogos que despertaron su interés por la genética y la microbiología; su tesis, que fue dirigida por el biólogo italiano Salvador Edward Luria, versaba ya sobre los efectos de los rayos X en la multiplicación de los bacteriófagos.
Posteriormente completó sus estudios con una beca postdoctoral en el Consejo Nacional de Investigación de Copenhague, donde se estaban realizando investigaciones sobre las estructuras de las grandes moléculas biológicas; allí se interesó por la química estructural de los ácidos nucleicos y trabajó en el ADN de las partículas víricas infecciosas. Conoció, en un simposio celebrado en la ciudad de Nápoles, el trabajo del investigador Maurice Wilkins, y ello le hizo centrar el rumbo de sus investigaciones hacia el descubrimiento de la química estructural de las moléculas biológicas.
James D. Watson trabajó en la Universidad de Cambridge, donde investigó, junto a Francis Crick, la estructura del ADN, constatando los componentes esenciales de este ácido: cuatro bases orgánicas que debían estar enlazadas por pares (adenina con timina y guanina con citosina). Las cadenas del azúcar desoxirribosa aparecían unidas a grupos fosfatos y a estas bases orgánicas. La información base sobre los componentes del ADN ya había sido proporcionada por científicos como Chargaff, y por los biofísicos Rosalind Franklin y Mauricie Wilkins, los cuales ya habían utilizado las técnicas cristalográficas de rayos X para fotografiar la molécula de ADN.
Con esta información y animados por las técnicas de trabajo de Franklin y Wilkins, James Watson y Francis Crick discernieron la estructura helicoidal de una molécula de ADN, que estaba formada por dos cadenas de bases nucleótidas enlazadas en forma de doble hélice; la doble hélice presentaba hacia el exterior las moléculas de azúcar y fosfato, y hacia el interior las bases emparejadas de forma complementaria. Este modelo molecular en doble hélice para el ADN permitía a la molécula duplicarse, puesto que las dos cadenas de la hélice eran complementarias, y constituía la base de los mecanismos de transferencia de la información biológica. Con esto se pudo comprender cómo se transmite el material hereditario de unas generaciones a otras. Este descubrimiento, considerado como uno de los principales avances de la historia de la biología y de la ciencia en general, cambió el rumbo de la bioquímica y dio paso a una nueva disciplina, la biología molecular.
George Wells Beadle
(Wahoo, 1903 - Pomona, 1989) Biólogo norteamericano que obtuvo el premio Nobel de Fisiología y Medicina en 1958. George Beadle consiguió su doctorado por la Universidad de Cornell; fue catedrático del Instituto mdonde se dedicó al estudio de la genética del color de los ojos en la mosca del vinagre, laDrosophila; observó que los genes dirigían de alguna manera la producción del pigmento ocular.
George Beadle
En Estados Unidos conoció al microbiólogo Edward Tatum; juntos emplearon el hongo rosa del pan Neurospora para un estudio de bioquímica genética. Estos hongos tienen una rápida reproducción y fácil crecimiento, y en estado adulto son haploides, de forma que los genes mutantes muestran su expresión fenotípica; expusieron la Neurospora a los rayos X para generar así mutaciones y examinaron las crías mutantes intentando explorar su capacidad para sintetizar los nutrientes necesarios para su propio crecimiento de larvas a adultos.
Concluyeron sus investigaciones determinando que la función de todo gen es la de controlar la producción de un enzima específico; esta idea había sido formulada treinta años antes por Garrod, pero el valor de sus investigaciones residía en el diseño de un método experimental que permitió el progreso y desarrollo de la bioquímica genética. En 1958 le fue concedido el premio Nobel de Fisiología y Medicina, compartido con Edward Tantum y Joshua Lederberg, por sus estudios sobre la regulación de los procesos químicos y sus investigaciones sobre recombinación genética.
Edward Lawrie Tatum
(Boulder, 1909 - Nueva York, 1975) Bioquímico y genetista estadounidense, premio Nobel de Fisiología y Medicina en 1958. Fue doctor en bioquímica por la Universidad de Wisconsin y profesor en las universidades de Utrecht, Stanford y Yale.
Comentarios
Publicar un comentario